Searching for BSM Higgs Signals at NLO

Fermilab March 13th 2014

Englert, MM: JHEP

Craig, Englert, MM: PRL

Englert, MM, Spannowsky: PRD

Matthew McCullough Simons Postdoctoral Fellow, MIT

Towards a Precision Higgs Era

• Higgs:

 Unique opportunity to confront fundamental questions about nature.

- Why expect new physics?
 - Hierarchy problem
 - SUSY, Composite, Extra Dim, unknown solutions to hierarchy problem?
 - Dark matter:
 - Higgs portal, new EW states?
 - It might be there and we should look!

Towards a Precision Higgs Era

- Higgs:
 - Unique opportunity to confront fundamental questions about nature.

- In practice:
 - Need to determine all properties
 (couplings/higher dim) as best as possible.

What should we look for?

- Tree level?
 - Already know where to look:

- Tree level?
 - Already know where to look:

- Tree level?
 - Only if Higgs mixed with new scalar...

 No tree level: new fields charged under additional symmetry (Lorentz/global/ gauge)

– Only at loop level in this case!

- Loop level?
 - Already know where to look:

- Former has received a **LOT** of attention
- Finite: straightforward to calculate

- Loop level?
 - Almost entirely unexplored!

Def: LO amplitude (whatever loop-level)
 SM-like, new physics enters at NLO.

- Loop level?
 - Almost entirely unexplored!

- Very generic possibility...
- But what should we look for?
- NLO → small, so best bet: best accuracy.

Higgs Couplings: Future

• What about LHC + 250 GeV LC?

LHC accuracy similar for other couplings

Higgs Couplings: Future

- At LC Z-coupling is special. Why?
 - 250 GeV Associated Production dominant:

- Measure Z-recoils alone
 - Determine coupling independent of Higgs decays!

Associated Production: BSM

What precision to expect?

$$\delta(\sigma_{Zh}) = 2\delta(g_Z)$$

Table 1-20. Expected precisions on the Higgs couplings and total width from a constrained 7-parameter fit assuming no non-SM production or decay modes. The fit assumes generation universality ($\kappa_u \equiv \kappa_t = \kappa_c$, $\kappa_d \equiv \kappa_b = \kappa_s$, and $\kappa_\ell \equiv \kappa_\tau = \kappa_\mu$). The ranges shown for LHC and HL-LHC represent the conservative and optimistic scenarios for systematic and theory uncertainties. ILC numbers assume (e^- , e^+) polarizations of (-0.8, 0.3) at 250 and 500 GeV and (-0.8, 0.2) at 1000 GeV. CLIC numbers assume polarizations of (-0.8, 0.9) for energies above 1 TeV. TLEP numbers assume unpolarized beams.

Facility	LHC	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up	CLIC	TLEP (4 IPs)
\sqrt{s} (GeV)	14,000	14,000	250/500	250/500	250/500/1000	250/500/1000	350/1400/3000	240/350
$\int \mathcal{L}dt$ (fb ⁻¹)	300/expt	2000/0004	050 ; 500	1100 1000	200 500 1000	1150 1000 0500	500±1500±2000	10,000+2600
κ_{γ}	5 - 7%	2-5%	8.3%	4.4%	3.8%	2.3%	-/5.5/<5.5%	1.45%
κ_g	0 - 870	0 070	0.007	1 107	1 10/	0.070/	0.0/0.19/0.00%	0.79%
κ_W	4 - 6%	0 =04	0.0076	0.2176	0.21/0	0.007	1.5/0.15/0.11%	0.10%
κ_Z	4-6%	2-4%	0.49%	0.24%	0.50%	0.3%	0.49/0.33/0.24%	0.05%
κ_{ℓ}	0 - 070	2 570	1.00/	n ne0/.	1 90%	0.700/	0.0/1.4/ <1.0/0	0.51%
$\kappa_d = \kappa_b$	10-13%	4-7%	0.93%	0.60%	0.51%	0.4%	1.7/0.32/0.19%	0.39%
$\kappa_u = \kappa_t$	14-15%	7-10%	2.5%	1.3%	1.3%	0.9%	3.1/1.0/0.7%	0.69%

Associated Production: BSM

- Great testing ground for NLO ideas
 - Need to calculate:

- Magnitude of corrections?
 - Try specific models first

Models: Inert 2HDM

• "Inert" Two Higgs doublet model

$$V \supset m_{\phi}^{2} |\phi|^{2} + \lambda |H|^{2} |\phi|^{2} + \lambda' |H \cdot \phi^{\dagger}|^{2}$$

No tree-level modifications

Charged under approximate symmetry

- Trade these parameters for more intuitive set:
 - Charged scalar mass: m_{ϕ_+}
 - Charged scalar tri-linear coupling to Higgs: A_{ϕ_+}
 - Charged-neutral mass-splitting: Δ_ϕ
- Where we define $\Delta_{\phi}=m_{\phi_0}-m_{\phi_+}$

Models: Inert 2HDM

• "Inert" Two Higgs doublet model

$$V \supset m_{\phi}^{2} |\phi|^{2} + \lambda |H|^{2} |\phi|^{2} + \lambda' |H \cdot \phi^{\dagger}|^{2}$$

• Using Feynarts/Formcalc/Looptools calculate

SM@NLO

Models: Inert 2HDM

• "Inert" Two Higgs doublet model

$$V \supset m_{\phi}^{2} |\phi|^{2} + \lambda |H|^{2} |\phi|^{2} + \lambda' |H \cdot \phi^{\dagger}|^{2}$$

• Using Feynarts/Formcalc/Looptools calculate and the new physics contributions:

• Also, calculate the 2-point functions necessary for Peskin-Takeuchi...

Results: Parameterization

- Define two parameters
 - Correction to associated production:

$$\delta\sigma_{Zh} = \frac{\sigma_{BSM}(e^+e^- \to Zh) - \sigma_{SM}(e^+e^- \to Zh)}{\sigma_0(e^+e^- \to Zh)}$$

- Corrections to diphoton Higgs decay

$$R_{h\gamma\gamma} = \frac{\Gamma_{BSM}(h \to \gamma\gamma)}{\Gamma_{SM}(h \to \gamma\gamma)} = \frac{BR_{BSM}(h \to \gamma\gamma)}{BR_{SM}(h \to \gamma\gamma)} \left[\frac{\Gamma_{BSM}^{\text{tot}}}{\Gamma_{SM}^{\text{tot}}} \right]^{-1}$$

Results: Inert Doublet

• As expected, corrections to associated production may be observable!

Results: Inert Doublet

Corrections mostly quadratic in coupling:

- EW gauge corrections subdominant!
 - Remember this...

What About Fundamental Ideas?

• Naturalness under scrutiny:

$$h - - (\Lambda) - - h \neq \Lambda^2$$

- We know some natural theories:
 - SUSY
 - Composite....

• Common feature: Top Partners!

What is Naturalness?

• Pragmatically: No quadratic divergences.

$$h - - - h \neq \Lambda^2$$

• LHC: SUSY/Stop/KK/t' searches...

- Explore naturalness generally?
 - Must we commit to specific UV-completions?

Generalizing Naturalness

• Staring at this: h - - - h

• Scalars:

$$\mathcal{L}_{\text{Nat}} = \sum_{i} (|\partial_{\mu} \phi_{i}|^{2} - m_{i}^{2} |\phi_{i}|^{2} - \lambda_{i} |H|^{2} |\phi_{i}|^{2})$$

• Coupling is fixed: $\sum_{i} \lambda_{i} = 6\lambda_{t}^{2}$

• Captures dominant top-partner-Higgs interactions!

Generalizing Naturalness

• Scalars:

$$\mathcal{L}_{\text{Nat}} = \sum_{i} (|\partial_{\mu} \phi_{i}|^{2} - m_{i}^{2} |\phi_{i}|^{2} - \lambda_{i} |H|^{2} |\phi_{i}|^{2})$$

- Coupling is fixed: $\sum_{i} \lambda_{i} = 6\lambda_{t}^{2}$
- Captures aspects of naturalness!
 - Specifically: Any solution to the hierarchy problem with scalar top partners will have at least these fields with these couplings.
 - First: Assuming gauge singlets.

• Staring at this:

$$\delta m_h^2 = h - - - h$$

• Staring at this:

Frequently discussed

• Staring at this:

$$\delta Z_h = h - - - h$$

• Staring at this:

• Staring at this:

$$\delta Z_h = h - - \left(? \right) - - h$$

• Is it physical? Integrating out:

$$\mathcal{L}_{eff} = \frac{c_H}{m_\phi^2} \left(\frac{1}{2} \partial_\mu |H|^2 \partial^\mu |H|^2 \right) + \dots$$

• Staring at this:

$$\delta Z_h = h - - \left(? \right) - - h$$

• Is it physical?

$$\mathcal{L} \supset \left(1 + 2v^2 \frac{c_h}{m_{\phi}^2}\right) \frac{1}{2} \partial_{\mu} h \partial^{\mu} h$$

$$+ m_W^2 W^+ W^- + \frac{\sqrt{2}}{v} m_W^2 h W^+ W^- + \dots$$

• Staring at this:

$$\delta Z_h = h - - \left(? \right) - - h$$

Is it physical?

$$\mathcal{L} \supset \left(1 + 2v^2 \frac{c_h}{m_\phi^2}\right) \frac{1}{2} \partial_\mu h \partial^\mu h$$
 Rescaling pulls correction into all other couplings
$$+ m_W^2 W^+ W^- + \frac{\sqrt{2}}{v} m_W^2 h W^+ W^- + \dots$$

• Staring at this:

$$\delta Z_h = h - - \left(? \right) - - h$$

• Is it physical?

$$\mathcal{L}_{eff} = \frac{c_H}{m_\phi^2} \left(\frac{1}{2} \partial_\mu |H|^2 \partial^\mu |H|^2 \right) + \dots$$

• Yes! $\delta c_{hVV} = \delta c_{h\overline{f}f} = c_H v^2/m_\phi^2$

• But... naturalness: $m_\phi \sim v$

• Need the full calculation, e.g.

Correction enters via counter-terms.

• If you happen to care...

$$\delta c_{hVV} = \frac{9\lambda_t^2 m_t^2}{4\pi^2 n_{\phi} m_h^2} \left(1 + F\left(\frac{m_h^2}{4m_{\phi}^2}\right) \right)$$

• Where:

$$F(\tau) = \frac{1}{4\sqrt{\tau(\tau - 1)}} \log \left(\frac{1 - 2\tau - 2\sqrt{\tau(\tau - 1)}}{1 - 2\tau + 2\sqrt{\tau(\tau - 1)}} \right)$$

• LC offers extraordinary precision!

Never say never for LHC too...

• Can a LC probe naturalness?

Yes.

• What if top-partners have EW charges?

- Result still dominated by WF correction!
 - C. Englert and M. M. $(\lambda_t^2 \gg g^2, g'^2)$

Applies to all scalar top-partners:

Regardless of gauge charges!

Applies to all scalar top-partners:

· Regardless of gauge charges!

- Known Natural Theories:
 - SUSY, Composite, Technicolor, UEDs, RS,...
- Under some tension from LHC!

- But weak scale may still be natural
 - Flipped SUSY, Twin Higgs, SUSY with hidden stops,...!

• If, so what are generic predictions?

• Goal: Distill Higgs physics from naturalness and test it!

• Lepton Collider:

enables exploration of naturalness principle, independent of specific models!

• Goal: Distill Higgs physics from naturalness and test it!

• Lepton Collider:

$$\delta$$
 e h

... No fail theorem for naturalness!

BSM@NLO@LHC

Only applicable to lepton collider?

Naively: NLO effects typically too small

• Less naively: LHC makes lots of Higgs, can probe tails of distributions.

• BSM NLO effects may be measurable.

- Certain searches rely on boosted Higgs
 - Boosted cuts, BDRS analysis (Butterworth, Davison, Rubin, Salam)
- Best example: $pp \to hZ$, $h \to bb$

• Production:

• So what? This is a $10_{1.0}$ + $7_{NI.0}$ % effect.

• Currently: absorb into NNLO K-factor (Only for total cross section!)

• Is it a good idea to absorb gluon fusion into Drell-Yan K-factor, then apply boosted analysis?

Typical scales in boosted analysis:

$$p_{T,h} \gtrsim 150 \text{ GeV}$$

• Is it a good idea to absorb gluon fusion into Drell-Yan K-factor, then apply boosted analysis?

• Typical scales in Drell-Yan:

• Is it a good idea to absorb gluon fusion into Drell-Yan K-factor, then apply boosted analysis?

• Typical scales in gluon fusion:

• Drell Yan + Gluon fusion p_T distribution is not a re-scaled Drell-Yan distribution:

• Drell Yan + Gluon fusion p_T distribution is not a re-scaled Drell-Yan distribution:

• Drell Yan + Gluon fusion p_T distribution is not a re-scaled Drell-Yan distribution:

• In terms of invariant mass:

• After applying typical boosted cuts and BDRS substructure analysis:

• Is it a good idea to absorb gluon fusion into Drell-Yan K-factor, then apply boosted analysis? No!

• Ok for discovery data, but not ok for future data...

If we denote the inclusive K-factor as

$$K_{\text{eff}} = \frac{K_{\overline{q}q}^{\text{NNLO}} \times \sigma_{\overline{q}q}^{\text{Inc}} + K_{gg}^{\text{NLO}} \times \sigma_{gg}^{\text{Inc}}}{\sigma_{\overline{q}q}^{\text{Inc}}}$$

Then, by construction

$$\sigma^{\operatorname{Inc}} = K_{\operatorname{eff}} \sigma_{\overline{q}q}^{\operatorname{Inc}}$$

• But, due to the different distributions

$$\operatorname{Cuts}[\sigma^{\operatorname{Inc}}] \neq K_{\operatorname{eff}} \times \operatorname{Cuts}[\sigma^{\operatorname{Inc}}_{\overline{q}q}]$$

• Should analyze Drell-Yan and gluon fusion separately...

• There are implications for SM Higgs searches.

• Full result gives 9% enhancement after typical $p_{\scriptscriptstyle T}$ cuts.

• Full result gives 1% reduction after p_T cuts and BDRS.

• Quoted theory errors: 5.5%.

Returning to diagrams:

• Finite, as in $qq \rightarrow h$!

- BSM result: rescaled Higgs couplings
 - No ambiguities about counterterms...

• Naïvely:

• Reality: t, bt, bt, b $\sim c_V^2 + f(c_V, c_t, c_B)$

• BSM Higgs couplings may spoil interference, enhancing gluon fusion!

BSM@NNLO in Inclusive Rate

• Naïve result:

$$R \equiv \frac{\sigma_{\rm BSM}}{\sigma_{\rm SM}} = c_V^2 = (1 + \delta_V)^2$$

Full result at inclusive level:

Weak dependence on top coupling.

$$R_{\text{Inc}} = 1 - 0.14\delta_t + 0.06\delta_t^2 - 0.26\delta_t \delta_V + 2.14\delta_V + 1.20\delta_V^2$$

Similar to LO scaling

• Naïve result:

$$R \equiv \frac{\sigma_{\rm BSM}}{\sigma_{\rm SM}} = c_V^2 = (1 + \delta_V)^2$$

Full result after boosted cuts and BDRS:

Much stronger dependence on top coupling. Boosted cuts "pull-out" boxes and triangles.

$$R_{\text{BDRS}} = 1 - 0.42\delta_t + 0.52\delta_t^2$$

- $1.46\delta_t \delta_V + 2.42\delta_V + 1.94\delta_V^2$

- BSM searches at the 14 TeV LHC?
 - BSM Standard Candles:
 - Higgs portal? Universal re-scaling, nothing new
 - Type II 2HDM (SUSY etc)

$$c_V = \sin(\beta - \alpha)$$

$$c_t = \cos\alpha/\sin\beta$$

$$c_b = -\sin\alpha/\cos\beta$$

• Re-scaled: $\sigma(pp \to hZ)$, $BR(h \to \overline{b}b)$

• Type II 2HDM Results:

Type II 2HDM Results:

Significant differences! Gluon fusion component clearly important!

- Why the differences?
- Due to unitarity, typically $c_V \leq 1$
 - LO implies:

$$\sigma(pp \to hZ) \le \sigma_{\rm SM}(pp \to hZ)$$

This is an artificial restriction due to LO assumption!

- With gluon fusion included there is no restriction, especially if c_t altered!

• SM box vs triangle cancellation spoiled if modified couplings giving large effects!

LHC Higgs Summary

• SM:

 Higgs precision: revisiting NLO distributions may reveal interesting features

• BSM:

- LO assumptions: Ok for discovery data, but may misinterpret or overlook BSM Higgs signals in future data!
- Precision BSM will require NLO calculations
- Demonstrated here in boosted 2HDM

Toward a Precision Higgs Era

• Higgs:

 Unique opportunity to confront fundamental questions about nature.

- In practice:
 - Keep an open mind to all possibilities:
 - Nice Higgs: BSM at LO
 - Ambivalent Higgs: BSM at NLO
 - Nasty Higgs: SM at all orders.
- Prepare to confront any outcome, leave no stone unturned...

Toward a Precision Higgs Era

- Higgs:
 - Unique opportunity to confront fundamental questions about nature.

- In practice:
 - Keep an open mind to all possibilities:
 - Nice Higgs: BSM at LO
 - Ambivalent Higgs: BSM at NLO
 This work only scratches surface!
 - Nasty Higgs: SM at all orders.
- Prepare to confront any outcome, leave no stone unturned...